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SUMMARY

The Vanguard satellites and component parts were balanced

within the specified limits by using a Gisholt Type-S balancer in

combination with a portable International Research and Develop-

ment vibration analyzer and filter, with low-frequency pickups.

Equipment and procedures used for balancing are described; and

the determination of residual imbalance is accomplished by two

methods: calculation, and graphical interpretation. Between-the-

bearings balancing is recommended for future balancing of pay-

loads.
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BALANCING VANGUARD SATELLITES

by

A. Simkovich and Robert C. Baumann
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INTRODUCTION

co
c_

The Vanguard third-stage rocket is spin-stabilized to insure directional stability

during the burning period. The spin velocity of approximately 200 rpm is imparted by

two small solid-propellant rockets mounted on the spin table that axially supports the

third-stage rocket-satellite combination within the forward section of the second

stage.

The third stage has four radial support arms attached to the outer race of the for-

ward spin bearings (Figures 1 and 2). These arms are jettisoned as the retrorockets

retard the second stage allowing the third stage to emerge. The satellite is also mounted

on the outer race of the spin bearing; as soon as the race is freed, the satellite begins to

acquire spin because of bearing friction. Both the third stage and the satellite must be

statically and dynamically balanced in order to minimize flight-path errors during third-

stage burning.

Early in the Vanguard program a limit of imbalance for the satellie payload was

fixed at 2 ounce-inches; this is a static tolerance. No specification was set for the dynamic

imbalance of the payload. Each payload was balanced both statically and dynamically to

the limiting accuracy of the balancing equipment.

EQUIPMENT

Type

A combination of the Gisholt Dynetric Balancer (Type-S), and the International Re-

search and Development Corporation (IRD) Vibration Analyzer (Model 652LF) and Filter

(Model 1064) was employed to balance the satellites. The Gisholt machine was used to

support and revolve a special tubular-steel balancing arbor from which the satellites were

cantilevered. The special Teflon half-bearings, located 28 inches apart center-to-center,

were used in the Gisholt suspension to support the arbor (Figure 3).



Locatedat eachbearingpointwasanIRDmagnetic-corelow-frequencyvibration
pickupwith maximumresponseabove300rpm. Thean_,,ularspeedusedfor balancing
all Vanguardsatelliteswas322rpm, whichlies wellwithin thefrequencyrangeof these
pickups(Figure4).

A switchwasusedto permit convenientmonitoringof eitherpickup. After filtering
bya bandpassfilter to eliminateextraneousvibrationfrequencies(Figure5),the signal
passedonto thevibrationanalyzer,andwasutilized for firing a stroboscopiclight every
revolutionto indicatethefrequency(whichremainedcoJLstant)andtheamplitudeof vi-
bration.

Limitations

It was not possible to balance dynamically either the test vehicle payload spheres*

(e.g., Vanguard I) or the separation mechanisms; the system sensitivity was inadequate

to detect correction-plane differences of 2 or 3 inches at the low mass levels involved.

However, static balancing of these small units was acco_nplished very satisfactorily. Al-

though a 50-pound payload was the largest Vanguard pay Load balanced, a 100-pound pay-

load probably could be balanced with the existing system after minor modification.

To accommodate the Vanguard satellite with antennas extended, it was necessary to

raise the Gishold machine an additional foot. This resulted in a swing clearance of ap-

proximately 4 feet. With the required 4-foot swing, the satellite could not be supported

between the bearings on the existing Gishold Type-S ma4"hine. Therefore, it was neces-

sary to cantilever the satellite off one end of the machine.

The accuracy of the system permitted balancing the Vanguard satellites to'a limit of

0.25 ± 0.1 ounce-inch maximum imbalance. The test-ve!_icle spheres and separation de-

vices could be balanced to 0.1 ± 0.05 ounce-inch. Becaase of interchangeability require-

ments and other variables, these lower limits were n)t realized with flight assem-

blies. The final balance values measured for the Vanguard satellites are summarized

in Appendix A.

*The 6.4-inch "minimal" satellites employed as payloads in the Vanguard Test Vehicle
series.



BALANCING PROCEDURES

General Method

The first step in any balancing operations is to make certain that the basic system

used for balancing is operating properly and the arbor is extremely well balanced. In

order to obtain the desired rotational speed of the arbor, the diameters of the driver (at

the motor) and the wheel (mounted on the arbor) were machined. The arbor speed was

checked by using a small photocell and a light source. The cell was mounted opposite a

hole in the end plate of the arbor, and a light source was placed facing it on the opposite

side of the plate. The output from the photocell was fed into a Hewlett-Packard frequency

counter. A rotational speed of 322 rpm was obtained very accurately in this fashion.

Several types of drive belts were tested; a thin woven-cloth belt, 1 inch wide,

manufactured by the Globe Woven Belting (Buffalo, New York) was selected as the most

suitable, since a minimum slippage and vibration resulted. The wheel (mounted on the

arbor) was slightly crowned to keep the belt centered and to prevent runoff.

The drive motor was started by a foot switch, and the belt was engaged by lowering

a handle connected with the idler pulleys. The bearings were locked during startup; as

soon as the arbor was up to speed, one or both were unlocked. Amplitude readings could

be made at each bearing by an arrangement that permitted switching from one pickup to

the other. These pickups were mounted on the floating bearing blocks.

In all cases the satellites were balanced by placing them on a balanced standard

satellite separation mechanism* mounted on the arbor. This device was centered and

checked to prevent the introduction of errors (Figure 6).

When the checks on the basic system were completed, the unit to be balanced was in-

stalled on the separation device. Prior to installation, a thorough inspection of the sphere

was made to verify that all wiring and components were in position and firmly attached.

Early balancing studies yielded a systematic method for balancing the satellites on the

system described. This basic approach consists of adding correction weights in three

planes, i.e., in the equatorial plane (static), in the plane 45 degrees N and in the plane 45

degrees S. The procedure is briefly described as follows (Figure 6):

(1) Spin unit, and record phase and amplitude readings for each bearing.

(2) Add a single weight (about 20 grams) in equatorial plane at a point 90 degrees

clockwise from phase reading of left bearing.

*Baumann, R. C., "Vanguard Satellite Separation Mechanisms," NASA Technical Note
D-497, in publication (1960)



(3) Spinunit withonly left bearingunlocked,andnotephaseandamplitudereadings.
Adjustcounterweightin amountandpositionuntil amplitt_dehasdroppedinto the rangeof
0.001- 0.002inchandphaseis essentiallythat recordedin step(1).

(4) Place one weight (15 grams) in 45-degree N plane and a second of equal amount in

45-degrees plane, so that weights are 180 degrees out-o_-phase, to produce a couple

effect. Record phase and amplitude readings with both b,_arings unlocked. Repeat this

process eight times, shifting weights 45 degrees around _he rotation axis each time.

(5) Select the location of these two weights which yi°dded a minimum in amplitude

readings. Return weights to this location, and adjust amc_unt of each weight until ampli-

tude at each bearing is reduced to the range of 0.001 - 0.)02 inch. K necessary, shift

position of each weight slightly to lower amplitudes. Phase reading for each bearing

should agree closely with reading in step (1).

(6) Replace temporary (clay) weights with permanent lead weights; attach to shell

with screws and nuts. Change only one weight at a time. Make lead weights slightly

heavier than indicated by calculations, to permit subtracting from permanent weights

rather than adding.

(7) Determine residual imbalance in unit, using che(kweights of two or three differ-

ent sizes (e.g., 7.5, 10 grams). Record amplitude readin_ s first with right bearing locked

and left bearing unlocked, then with left bearing locked ar d right bearing unlocked. Repeat

process eight times with each checkweight, each time shilting weight 45 degrees around

unit in equatorial pla,le. Determine residual imbalance (,;ee Appendix B).

Although it is possible to correct the imbalance with only two plm_es of correction, the

present method considerably simplified the balancing pro)lem for the particular case of a

cantilevered satellite. Between-the-bearings balancing can be readily attained by the two-

plane correction method, since the cross-effect between (orrection planes is generally

not too great. The difference in the amount of counterweight needed for each method was

calculated and was found to be relatively small.

I

¢O

CO

Test Vehicle Spheres

The smallness of the test vehicle payloads made it in possible to attain a two-plane

correction, since the machine was insufficiently sensitive and could not detect differences

between planes located within 3 inches of each other. Consequently, the lead counter-

weights were added at the "equator" of the sphere. Amplitude and phase readings were

taken with one bearing, adjacent to the sphere, unlocked, _s this provided sufficient infor-

mation for a one-plane correction.



20-Inch Satellites

The balancing o" the 20-inch Vanguard satetlites was achieved according to the out-

lined seven-step procedure.

13-Inch Diameter Magnetometer Satellite and Magnetometer

X-Ray Satellite

CO The 13-inch-diameter magnetometer satellite and the magnetometer x-ray satellite

(Vanguard lid have chimney-like long extensions (sensor tubes) out of their north poles.

The general procedure was modified as follows: The equatorial weight was added as

previously described but also a second weight was added at the tip of the magnetometer

sensor tube; both weights were manipulated alternately until the desired amplitude level

was reached. The residual imbalance was determined with a single checkweight at the

equator as in the general method.

Separation Device (40-Second Timer)

The standard (40-second timer) satellite separation devices ::: were balanced with a

single weight because of their comparatively short length. The principal source of im-

balance lay in the hea W g-weight. Each counterweight was located opposite the g-weight

and was attached inside the separation device sleeve. Balancing was accomplished with

only one bearing unlocked, since this was a static (single-plane) balance.

Combination of Separation Device (300-Second Timer) and

Spin-Retarding Mechanism

This combination was balanced by the method described for separation devices. How-

ever, since both components possessed a g-weight, the g-weights were positioned opposite

each other. This orientation of the weights reduced the initial imbalance to such an ex-

tent that only a small counterweight (about 5 grams) was needed, whereas the separation

device required a weight of about 60 grams.

*Baumann, R.C., "Vanguard Satellite Separation Mechanisms," NASA Technical Note

D-497, in publication {1960).



Radiation Shields

The 14-inch radiation shields used on one satellite were balanced in the same manner

as were the separation devices. It was not possible to ba).ance the larger 20-inch-diameter

shields with the existing equipment; however, a static balance was achieved by attaching

each shield to a small shaft resting on rollers.

CONCLUSIONS AND RECOMMENDATIONS

The Vanguard satellites and component parts were b_.lanced within the specified limits

using the IRD and Gisholt equipment in the manner described. The experience gained in

balancing work during the Vanguard program indicates that future balancing of payloads

should be accomplished between-the-bearings. In the present arrangement the satellite 's

weight constituted approximately 25 percent of the total weight revolved. The remaining

75 percent acted as a parasite in that it reduced the machine's sensitivity to imbalance in

those objects being balanced. Had the satellites been balanced between bearings, the weight

of the supporting member would have been reduced by approximately one-half, raising

the sensitivity accordingly. Between-the-bearings balancing also decreases cross-effects

in that the operator is permitted considerably more control over the work.

A thorough review of the literature published by manufacturers of balancing equipment

revealed two firms whose standard machines seem adaptable for satellite balancing. The

Gisholt Machine Company and American Trebel products can be utilized over a relatively

broad range of workpieces. For beth the immediate and anticipated uses, the type 4U

(Gisholt) and Models Dev-60 and Dev-3000 (American Trt_bel) appear desirable. (Appendix

C presents a fairly comprehensive listing of manufacturers and their equipment charac-

teristics.)

The vertical balancing method, which would be extremely desirable in the present ap-

plication to satellites, has not as yet been adequately developed for most purposes. Three

companies, American Trebel, Gisholt, and Tinlus Olson, list vertical dynamic balancing

machines among their available units. However, these machines are capable of handling

only comparatively small objects (50 pounds and 17-inch diameter, maximum); this is a

serious limitation. Future requirements may necessitat_ the use of vertical machines

exclusively. It would be of value, therefore, to investigate possible designs for vertical

machines.
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FREQUENCY (CPS)

Figure 4 - Output vs. frequency for low-frequency I.K.D. pickup
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MODEL NO. 1064 FILTER

(MODIFIED) SER. 215506

MODEL NO. 652LF VIBRATION ANALYZER

SER. NO. 95342

FILTER-ANALYZER COMBINATION

FILTER TUNED TO 5.6CPS

0.01
I I0 I00 I000

FREQUENCY (CPS)

Figure 5 - Relative response vs. frequency for I.R.D. filter and vibration analyzer
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DIAL iNDiCATOR

(a) Checking run--out of separation sleeve

• • _ ! i!!ii_!i! ¸

EPARATION SLEEVE

(d) Dynamic-balance determinatio_

Figure 6 - General Balancing Procedure for Vanguard Satellites (continued on next page)
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(c) Static-balance determination

• CHECKWEIGHT

(b) Installation of satellite

,CHECKWEIGHT

Figure 6 - General Balancing Procedure for Vanguard Satellites (concluded)
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Appendix A

TABULATION OF VANGUARD SATELLITES AND

DEGREE OF BALANCE OF FLIGHT UNITS

All Vanguard satellite flight units and their residual imbalance are listed below. Data

on dynamic imbalance of the Test Vehicle Spheres are not presented, as these units were

balanced with only one weight. The relatively low static imbalance of the magnetometer

flight unit no. 1 (SLV-5) was made possible by balancing and flying the unit on the same

separation mechanism sleeve. The counterweight numbers are for the total weight added

to each satellite.

Vehicle
no.

TV3

TV3BU

TV4

TV5

SLV1

SLV2

SLV3

SLV4

SLV5

SLV6

SLV7

Satellite

type and
unit no.

Test Vehicle Sphere F*

Test Vehicle Sphere G*

(Life Science)

Test Vehicle Sphere

(Vanguard I)*

X-Ray FU #2

Lyman-Alpha FU #3

Satellite
counterweight

(lb.)

0.05

0.04

0.04

0.22

0.33

Residual
static
(oz-in.)

0.2

0.1

0.2

1.2

1.4

X-Ray FU #1 0.33

Cloud Cover FU #2 0.13

Cloud Cover FU #1 0.15

(Vanguard II)

Magnetometer FU #I I 0.22
|

Radiation Balance 0.29 1

iMagn_eray...... L 0.36

1.3

1.4

1.6

0.3

0.5

2.3

Imbalance
dynamic
(oz-in.2)

0.9

2.1

1.5

1.4

5.5

1.9

3.1

2.6

I

*6 antennas, solar cell clusters
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DETERMINATION OF RESIDUAL IMBALANCE
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Two methods for determining residual imbalance are discussed herein: by calcula-

tion, and by graphical means.

Calculation Method

Derivation of equations for calculating imbalance

The imbalance in a satellite may be represented by a small imaginary weight w offset

from the satellite spin axis at some radius r, at a distance L from the plane passing

through the satellite center of gravity and perpendicular to the spin axis (Figure B1).

Static imbalance of the satellite is given by the product wr, and dynamic imbalance is

given by wrL.

If either the left or right bearing is locked, the satellite imbalance will create a re-

sultant moment about the locked bearing, which acts as a pivot point. This moment will

act in the same direction relative to the satellite. A weight placed on the periphery of the

satellite in any given plane and at various angular positions will be in phase with the

imaginary weight at a certain point, and out of phase 180 degrees from this point (Figure

B2). These two positions result, respectively, in maximum and minimum amplitude read-

ings. These figures are utilized in setting up a proportion to determine the weight re-

quired in the checkweight plane to counterbalance the existing moment of the residual im-

balance about the locked bearing.

From Figure B2, it is readily apparent that one-half the difference between the maxi-

mum and minimum amplitudes is proportional to the weight needed to counterbalance the

moment caused by satellite imbalance, and that the average of the maximum and minimum

figures is proportional to the checkweight. Thus

where

W=

a=

W=

A=

w W
a - A

weight needed to counterbalance moment,

half the difference between maximum and minimum amplitudes,

checkwetght,

average of maximum-minimum amplitudes.

(B1)

By locking first the right bearing and then the left, two w's (w 1 and Wrt , respectively)

are obtained. These w's are used in two simultaneous equations to calculate the static
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anddynamicimbalance.
derived as follows:

For M = O about the right bearing (refer to Figure B1),

wr (L + 9.25 + 1.1 + 4.1 + 28.1) = w 1 R(I( + 1.1 + 4.1 + 28.1),
known known

Where R is the radial distance to checkweight center cf gravity.

Simplifying the equation and putting wr = k gives

kL + 42.5 k - 43.3 WlR ::: O.

Similarly, for M = O about the left bearing,

wr (L + 9.25 + 1.1 + 4.1) = WrtR (19 + 1.1 + 4.1)

or

The equations for the Lyman-Alpha and X-Ray satellites are

kL + 14.4k - 15.2 WrtR = O.

Solving Equations B2 and B3 simultaneously gives

28.1k - 43.3WlR + 15.2 wrtR = O.

Therefore

k = 1.54 wlR - 0.54 WrtR (static),

kL = 43.3 WlR - 42.5 k (dynanic).

and

(B2)

(B3)

Thus, from the data gathered by using a checkweight, calculate w 1 and Wrt by Equation

B1, and use these values to calculate the static and dyn tmic residual imbalance. For all

units except the magnetometer, R is approximately 10 inches. In the case of the mag-

netometer, R equals 6.5 inches.

Typical calculation of residual imbalance

As an example of residual imbalance calculations consider Magnetometer Flight

Unit 2, using the data obtained with a 10-gm checkweight. The data are listed as follows:



Amplitude

Left bearing Rightbearing

9.3
9.6
9.5
9.3
9.0
9.1
9.0
9.2

12
12.75
12.25
12
12.25
12.0
12.0
12.5

17

Selectingthemaximumandminimumfiguresin eachcolumnandcalculatingthe w for
eachgive:

w1= 0.32 gm, Wrt = 0.31 gin.

The equations for static and dynamic residual imbalance in the magnetometer satellites

are:

k = 9.74 w 1

kL = 273.5 w 1

- 3.26 Wrt (static),

- 42.13 k (dynamic).

Using the calculated values of w 1 and Wrt gives

k = 2.11 gin-in., or0.07 oz-in. (equivalent to 0.00055 in. center-of-gravity dis-

placement);

and

(B4)

kL = -6.5 gin-in. 2, or -0.23 oz-in. 2. (B5)

The dynamic imbalance may be positive or negative, depending on the direction of the

moment.

Graphical Method

In order to determine the residual imbalance graphically, it is necessary to have

only one set of data; i.e., with the balanced unit rotating and both bearings free, read the

phase and amplitude of both right and left bearings. Using pickups and calibration curves

(Figure B3), correct the amplitude readings. Lay out to scale on graph paper, the relative

bearing positions and center of gravity of the unit being balanced. Select any appropriate
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scaleto represent the amplitude readings. A typical set _f readings follows for Mag-

netometer Satellite Flight Unit 2:

Left amplitude, 0.85; phase, 130 degrees,

Right amplitude, 0.3; phase, 230 degrees.

By using these data, a graphic determination of the satellite center-of-gravity displace-

ment due to imbalance is obtained (Figure B4). Resultant displacements are resolved into

two planes (i.e., 0 to 180 degrees, and 90 to 270 degrees) The graphic analysis is done in

three views: View A shows the resultant components resolved into the two planes. View

B shows how the arbor slope is obtained in each plane. View C shows how the resultant

displacement of the center of gravity with respect to satellite mounting plane is obtained.

The value obtained for the reading cited is 0.00038 in. displacement. An equivalent static

imbalance of 0.124 oz-in, results. This is not the true static, but the combined effect of

static and dynamic imbalance at the center of gravity along the spin axis. The calculated

values were 0.07 oz-in, in static and -6.5 gm-in. 2 (or - 0.23 oz-in. 2) dynamic residual

(Equations B4 and B5). Although the values obtained by the two methods are not identical,

there is reasonable correlation.

oo
o_

!

Conclusions

The balance tolerance of 2 oz-in. (static), imposed by the launch vehicle personnel

for the payloads, is equivalent to 0.0058-in. displacement of the center of gravity from the

spin axis for a 21.5-1b payload. The calculated method gives an equivalent center-

of-gravity displacement due to static imbalance of 0.0005 inch, while the graphic method

results in 0.0004 inch. Both results are better than specifications by a factor of ten.

SPIN
AXIS

LEFT
BEARING

_ _ _ ,G. _ __ _._

tlwt)
I
I
I

I
t

_'---- I0 .q.

I
!

I
2816

RIGHT
BEARING

[
I(Wrt )

I
t
1
I
t
t

Figure B1 - Typical dimensional relationship for ZO-inch-diameter satellites
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F.U. NO.?.
MAGNETOMETER

SATELLITE C

( I"=.001 AMPLITUDE )
90

270

9O

0

270

9°"°?° R

270

90

0

270

90

_80 o

VIEW C 270

R x Ws= EQUIV. STATIC IMBALANCE
O.O00B8 x 20.52LB =O.OOTBIN.- LB
=O.1240Z-IN.(EQUIV. STATIC IMBALANCE)

Figure B4 - Graphical determination of center-of-gravity displacement
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Appendix C

SURVEY OF BALANCING EQUIPMENT

A list of manufacturers of balancing equipment was obtained from the 1958 Thomas

Register, and letters were sent requesting all available information on balancing equip-

ment.

Literature received from the manufacturers was used as the source of information

for the accompanying table. The tabulated data give the range covered by the entire line

of machines manufactured by the company, for example, the maximum swing diameter

for American Trebel is 8 to 120 inches, which includes several sizes of machines. All

figures given are for standard equipment. However, certain companies -- notably Gisholt,

Tinius Olsen, and American Trebel -- indicate they are willing to adapt their machines to

customer's specifications.

After a thorough review of the literat:ure, it appears that the equipment of American

Trebel, Gisholt, and possibly Tinius Olsen closely fits the requirements for the proposed

applications. A Gisholt representative stated that their m_chines could be altered to ac-

commodate a maximum swing of 90 inches at 200 rpm. The literature for American Trebel

indicates their maximum standard swing is 120 inches; however, the exact speed is no_
known.

A fourth company, Stewart Warner, utilizes a unique method of balancing: revolving

the workpiece to a point beyond the resonant frequency an(t allowing the workpiece to coast

back through this frequency while noting the amplitude and phase readings for this particular

frequency. This is mentioned here because of its remarkably wide weight range. One ma-

chine listed by the company is capable of handling weights between 1 and 5000 pounds with

a sensitivity of 0.04 ounce-inch. This characteristic is not available, apparently, in other
machines.
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